• Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    This paper proposes a ternary stationary subdivision scheme for quadrilateral mesh. For regular and irregular quadrilateral meshes, different subdivision masks are applied to generate new vertices. The number of faces on the refined mesh is about nine times than that of the coarse mesh after every subdivision step. The limit surface generated by the new method is C2 continuous for a regular mesh and C1 continuous for an irregular mesh. Compared with typical subdivision schemes, the proposed scheme has faster convergence speed and the ability to solve arbitrary topological quadrilateral mesh. Some examples are given in the end to illustrate the performance of the new subdivision scheme.

    Reference
    [1]Catmull E,Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes.Computer Aided Design,1978,10(6):350-355.
    [2]Doo D,Sabin M.Behavior of recursive division surfaces near extraordinary points.Computer Aided Design,1978,10(6):356-360.
    [3]Ma WY.Subdivision surfaces for CAD-An overview.Computer Aided Design,2005,37(7):693-709.
    [4]Kobbelt L.√3-subdivision.In:Proc.of the SIGGRAPH 2000.New York:ACM Press,2000.103-112.
    [5]Dyn N,Levin D,Gregory JA.A butterfly subdivision scheme for surface interpolation with tension control.ACM Trans.on Graphics,1990,9(2):160-169.
    [6]Reif U.A unified approach to subdivision algorithms near extraordinary vertices.Computer Aided Geometric Design,1995,12(2):153-174.
    [7]Peters J,Reif U.The simplest subdivision scheme for smoothing polyhedra.ACM Trans.on Graphics,1997,16(4):420-431.
    [8]Habbib A,Warren J.Edge and vertex insertion for a class of C1 subdivision surfaces.Computer Aided Geometric Design,1999,16(4):223-247.
    [9]Zorin D.Smoothness of stationary subdivision on irregular meshes.Constructive Approximation,2000,16(3):359-398.
    [10]Stam J.On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree.Computer Aided Geometric Design,2001,18(5):383-396.
    [11]Zorin D,Velho L.4-8 subdivision.Computer Aided Geometric Design,2001,18(5):397-427.
    [12]Zorin D,Schr-der P.A unified framework for primal/dual quadrilateral subdivision scheme.Computer Aided Geometric Design,2001,18(5):429-454.
    [13]Stam J,Loop C.Quad/Triangle subdivision.Computer Graphics Forum,2003,22(1):1-7.
    [14]Warren J,Schaefer S.A factored approach to subdivision surfaces.Computer Graphics & Applications,2004,24(3):74-81.
    [15]Li GQ,Ma WY,Bao HJ.√2--Subdivision for quadrilateral meshes.The Visual Computer,2004,20(2-3):180-198.
    [16]Hassan MF,Ivrissimitzis IP,Dodgson NA,Sabin MA.An interpolating 4-poiont C2 ternary stationary subdivision scheme.Computer Aided Geometric Design,2002,19(1):1-18.
    [17]Maillot J,Stam J.A unified subdivision scheme for polygonal modeling.Computer Graphics Forum,2001,20(3):471-479.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘丽,张彩明,杨兴强,伯彭波.快速收敛的四边形网格三分细分模式.软件学报,2007,18(9):2346-2355

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 11,2006
  • Revised:May 11,2006
You are the first2038537Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063