Compression of Tate Pairings on Elliptic Curves
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [15]
  • |
  • Related [20]
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    In this paper, utilizing maps between cyclic groups contained in a finite field, two efficient methods for compressing a Tate pairing defined on a supersingular elliptic curve with prime characteristic p and MOV degree 3 are presented. They compress a pairing value from a string of length of 6logp bits to ones of 3logp and 2logp bits, respectively, and an implementation for both the compressed pairings makes use of the codes for the optimized algorithm of the original pairing and no new code is needed. Both the compressed pairings achieve the speed of the original implementation.

    Reference
    [1]Joux A.The weil and tate pairings as building blocks for public key cryptosystems.In:Fieker C,Kohel DR,eds.Algorithm Number Theory Symposium-ANTS-V.Berlin,Heidelberg:Springer-Verlag,2002.20-32.
    [2]Canetti R,Halevi S,Katz J.A forward-secure public-key encryption scheme.In:Biham E,ed.Advances in Cryptology-EUROCRPYT 2003.Berlin,Heidelberg:Springer-Verlag,2003.255-271.
    [3]Bohen D,Boyen X.Efficient selective-id secure identity based encryption without random oracles.In:Cachin C,Camenisch J,eds.Advances in Cryptology-EUROCRYPT 2004.Berlin:Springer-Verlag,2004.223-238.
    [4]Boneh D,Mironov I,Shoup V.A secure signature scheme from Biliear maps.In:Joye M,ed.The Cryptographers' Track at the RSA Conf.-CT-RSA 2003.Berlin,Heidelberg:Springer-Verlag,2001.98-110.
    [5]Steinfeld R,Bull L,Wang H,Pieprzyk J.Universal designated-verifier signatures.In:Laih CS,ed.Advances in Cryptology-ASIACRYPT 2003.Berlin:Springer-Verlag,2003.523-542.
    [6]Barreto PSLM,Kim H,Lynn B,Scott M.Efficient algorithms for pairing based cryptosystems.In:Yung M,ed.Advance in Cryptology-Crypto 2002.Berlin,Heidelberg:Springer-Verlag,2002.354-368.
    [7]Galbraith SD,Harrison K,Soldera D.Implementing the tate pairing.In:Fieker C,Kohel DR,ed.Algorithm Number Theory Symposium-ANTS-V.Berlin,Heidelberg:Springer-Verlag,2002.324-337.
    [8]Hu L,Dong J,Pei D.An implementation of cryptosystems Basedon tate pairing.Journal of Computer Science and Technology,2005,20(2):264-269.
    [9]Scott M,Barreto P.Compressed pairings.In:Franklin M,ed.Advances in Cryptology-CRYPTO 2004.Berlin,Heidelberg:Springer-Verlag,2004.140-156.http://ePrint.iacr.org/2004/032.pdf (Cryptology ePrint Archive,Report 2004/032).
    [10]Granger R,Page D,Stam M.On small characteristic algebraic Tori in pairing-based cryptography.http://ePrint.iacr.org/2004/ 132.pdf (Cryptology ePrint Archive,Report 2004/132).
    [11]Duursma I,Lee H.Tate pairing implementations for tripartite key agreement.In:Laih CS,ed.Advances in Cryptology-ASIACRYPT 2003.Berlin:Springer-Verlag,2003.111-123.
    [12]Boneh D,Franklin M.Identity based encryption from the weil pairing.In:Kilian J,ed.Advance in Cryptology-Crypto 2001.Berlin,Heidelberg:Springer-Verlag,2001.213-229.
    [13]Rubin K,Silverberg A.Algebraic Tori in cryptography.In:High Primes and Misdemeanours:Lectures in Honour of the 60th Birthday of Hugh Cowie Williams,Fields Institute Communications Series,American Mathematical Society.2003.http://www.math.uci.edu/~asilverb/bibliography/tori.pdf
    [14]Gao S.Normal bases over finite fields[Ph.D.Thesis].Waterloo:University of Waterloo,1993.http://www.math.clemson.edu/ ~sgao/
    [15]Cohen H.A Course in Computational Algebraic Number Theory.Berlin,Heidelberg:Springer-Verlag.1993.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

胡磊.椭圆曲线Tate对的压缩.软件学报,2007,18(7):1799-1805

Copy
Share
Article Metrics
  • Abstract:4478
  • PDF: 5362
  • HTML: 0
  • Cited by: 0
History
  • Received:July 06,2004
  • Revised:March 09,2006
You are the first2045224Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063