An Ensemble Approach to Intrusion Detection Based on Improved Multi-Objective Genetic Algorithm
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    There exist some issues in current intrusion detection algorithms such as unbalanced detection performance on different types of attacks, and redundant or useless features that will lead to the complexity of detection model and degradation of detection accuracy. This paper presents an ensemble approach to intrusion detection based on improved multi-objective genetic algorithm. The algorithm generates the optimal feature subsets, which achieve the best trade-off between detection rate and false positive rate through an improved MOGA. And the most accurate and diverse base classifiers are selected to constitute the ensemble intrusion detection model by selective ensemble approach. The experimental results show that the algorithm can solve the feature selection problem of intrusion detection effectively. It can also achieve balanced detection performance on different types of attacks while maintaining high detection accuracy.

    Reference
    Related
    Cited by
Get Citation

俞研,黄皓.基于改进多目标遗传算法的入侵检测集成方法.软件学报,2007,18(6):1369-1378

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 18,2006
  • Revised:December 06,2006
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063