• Article
  • | |
  • Metrics
  • |
  • Reference [15]
  • |
  • Related [20]
  • |
  • Cited by [14]
  • | |
  • Comments
    Abstract:

    This paper proposes an approach, namely the arena’s principle (AP), to construct the Pareto optimal solutions by utilizing features of the multi-objective evolution. It is proved that the AP works correctly and its computational complexity is O(rmN) (0<1). Theoretically, when AP is compared with Deb’s algorithm and Jensen’s algorithm (their computational complexity are O(rN2) and O(Nlog(r-1)N) respectively), AP is better than Deb’s, and is also better than Jensen’s when the objective number r is relatively large (such as r≥5). Moreover, AP performs better than the other two algorithms when m/N is relatively small (such as m/N≤50%). Experimental results indicate that AP performs better than the other two algorithms on the CPU time efficiency. In applications, AP can be integrated into any Pareto-based MOEA to improve its running efficiency.

    Reference
    [1]Coello Coello CA,Van Veldhuizen DA,Lamont GB.Evolutionary Algorithms for Solving Multi-Objective Problems.Kluwer Acedemic/Plenum Publishers,2002.
    [2]Coello Coello CA,Lamont GB.Applications of Multi-Objective Evolutionary Algorithms.Singapore:World Scientific,2004.
    [3]Corne DW,Jerram NR,Knowles JD,Oates MJ.PESA-Ⅱ:Region-Based selection in evolutionary multiobjective optimization.In:Proc.of the Genetic and Evolutionary Computation Conf.(GECCO 2001).Morgan Kaufmann Publishers,2001.283-290.
    [4]Knowles JD,Corne DW.Approximating the nondominated front using the Pareto archived evolution strategy evolutionary computation.Evolutionary Computation,2000.149-172.
    [5]Aguirre AH,Rionda SB,Coello Coello CA,Lizáraga GL,Montes EM.Handling constraints using multiobjective optimization concepts.Int'l Journal for Numerical Methods in Engineering,2004,59(15):1989-2017.
    [6]Fonseca CM,Fleming PJ.An overview of evolutionary algorithms in multi-objective optimization.Evolutionary Computation,1995,3(1):1-16.
    [7]Horn J,Nafpliotis N,Goldberg DE.A niched Pareto genetic algorithm for multiobjective optimization.In:Proc.of the 1st IEEE Conf.on Evolutionary Computation.Piscataway:IEEE Service Center,1994.82-87.
    [8]Zitzler E,Thiele L.Multiobjective evolutionary algorithms:A comparative case study and the strength pareto approach.IEEE Trans.on Evolutionary Computation,1999,3(4):257-271.
    [9]Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the strength pareto evolutionary algorithm for multiobjective optimization.In:Giannakoglou K,et al.,eds.Proc.of the EUROGEN 2001-Evolutionary Methods for Design,Optimisation and Control with Applications to Industrial Problems.2001.95-100.
    [10]Deb K,Pratap A,Agrawal S,Meyrivan T.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ.IEEE Trans.on Evolutionary Computation,2002,6(2):182-197.
    [11]Deb K,Agrawal S,Pratab A,Meyarivan T.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ.KanGAL Report,200001,Kanpur:Indian Institute of Technology,2000.
    [12]Jensen MT.Reducing the run-time complexity of multiobjective EAs:The NSGA-Ⅱ and other algorithms.IEEE Trans.on Evolutionary Computation,2003,7(5):503-515.
    [13]Zheng JH,Ling C,Shi ZZ,Xue J,Li XY.A multi-objective genetic algorithm based on quick sort.In:Tawfik AY,Goodwin SD,eds.Proc.of the 17th Canadian Conf.on Artificial Intelligence.London:Springer-Verlag,2004.175-186.
    [14]Deb K,Thiele L,Laumanns M,Zitzler E.Scalable test problems for evolutionary multiobjective optimization.In:Yao X,ed.Proc.of the 2002 Congress on Evolutionary Computation.New Jersey:IEEE Service Center,2002.825-830.
    [15]Knowles JD,Corne DW,Fleischer M.Bounded archiving using the lebesgue measure.In:Proc.of the 2003 Congress on Evolutionary Computation (CEC 2003),Vol.4.Canberra:IEEE Press,2003.2490-2497.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法.软件学报,2007,18(6):1287-1297

Copy
Share
Article Metrics
  • Abstract:4366
  • PDF: 7003
  • HTML: 0
  • Cited by: 0
History
  • Received:July 05,2006
  • Revised:August 18,2006
You are the first2033377Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063