An Efficient Algorithm for Mining Approximate Frequent Item over Data Streams
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A frequent item of a data stream is a data point whose occurrence frequency is above a given threshold. Finding frequent item of data stream has wide applications in various fields, such as network traffic monitor, data stream OLAP and data stream mining, etc. In data stream model, the algorithm can only scan the data in one pass and the available memory space is very limited relative to the volume of a data stream, therefore it is usually unable to find all the accurate frequent items of a data stream. This paper proposes a novel algorithm to find ε-approximate frequent items of a data stream, its space complexity is O(ε-1) and the processing time for each item is O(1) in average. Moreover, the frequency error bound of the results returned by the proposed algorithm is ε(1-s+ε)N. Among all the existed approaches, this method is the best.

    Reference
    Related
    Cited by
Get Citation

王伟平,李建中,张冬冬,郭龙江.一种有效的挖掘数据流近似频繁项算法.软件学报,2007,18(4):884-892

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 14,2006
  • Revised:May 16,2006
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063