• Article
  • | |
  • Metrics
  • |
  • Reference [12]
  • |
  • Related [20]
  • |
  • Cited by [12]
  • | |
  • Comments
    Abstract:

    The success of ISOMAP depends greatly on being able to choose a suitable neighborhood size, however, it is still an open problem how to do this effectively. Based on the fact that “short circuit” edges pass the area with the relatively lower local densities, this paper presents a new variant of ISOMAP, i.e. P-ISOMAP (pruned-ISOMAP), which can prune effectively “short circuit” edges existed possibly in the neighborhood graph and thus is much less sensitive to the neighborhood size and more topologically stable than ISOMAP. Consequently, P-ISOMAP can be applied to data visualization more easily than ISOMAP because the open problem described above can be avoided to the utmost extent. The effectivity of P-ISOMAP is verified by the experimental results very well.

    Reference
    [1]Tenenbaum JB.Mapping a manifold of perceptual observations.In:Jordan MI,Kearns MJ,Solla SA,eds.Advances in Neural Information Processing Systems 10.Denver:MIT Press,1997.682-689.
    [2]Tenenbaum JB,de Silva V,Langford JC.A global geometric framework for nonlinear dimensionality reduction.Science,2000,290(22):2319-2323.
    [3]Roweis ST,Saul LK.Nonlinear dimensionality reduction by locally linear embedding.Science,2000,290(22):2323-2326.
    [4]Balasubramanian M,Schwartz EL,Tenenbaum JB,de Silva V,Langford JC.The ISOMAP algorithm and topological stability.Science,2002,295(5552):7.http://www.sciencemag.org/cgi/content/full/295/5552/7a
    [5]Kouropteva O,Okun O,Pietik(A)ainen M.Selection of the optimal parameter value for the locally linear embedding algorithm.In:Wang L,Halgamuge SK,Yao X,eds.Proc.of the 1st Int'l Conf.on Fuzzy Systems and Knowledge Discovery:Computational Intelligence for the E-Age.Singapore,2002.359-363.http://www.ee.oulu.fi/research/imag/document/publications/FSKD02.pdf
    [6]Shao C,Huang HK.Selection of the optimal parameter value for the isomap algorithm.In:Gelbukh A,de Albornoz A,Terashima H,eds.Proc.of the 4th Mexican Int'l Conf.on Artificial Intelligence.Monterrey:Springer-Verlag,2005.396-404.
    [7]Zhou ZH,Cao CG.Neural Networks and Its Applications.Beijing:Tsinghua University Press,2004.172-207 (in Chinese).
    [8]Bernstein M,de Silva V,Langford JC,Tenenbaum JB.Graph approximations to geodesics on embedded manifolds.Technical Report,Stanford University,2000.http://isomap.stanford.edu/BdSLT.pdf
    [9]Lee JA,Lendasse A,Verleysen M.Nonlinear projection with curvilinear distances:ISOMAP versus curvilinear distance analysis.Neurocomputing,2004,57(1):49-76.
    [10]Carreira-Perpi(n)án M(A).A review of dimension reduction techniques.Technical Report,CS-96-09,Sheffield:University of Sheffield,1996.46-53.
    [11]Pelletier B.Kernel density estimation on riemannian manifolds.Statistics & Probability Letters,2005,73(3):297-304.
    [7]周志华,曹存根.神经网络及其应用.北京:清华大学出版社,2004.172-207.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法.软件学报,2007,18(4):869-877

Copy
Share
Article Metrics
  • Abstract:5241
  • PDF: 6969
  • HTML: 0
  • Cited by: 0
History
  • Received:November 13,2005
  • Revised:April 27,2006
You are the first2038782Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063