• Article
  • | |
  • Metrics
  • |
  • Reference [11]
  • |
  • Related [20]
  • |
  • Cited by [9]
  • | |
  • Comments
    Abstract:

    Braid group is a new considerable public key cryptography platform for the quantum computer ages, but almost all current intractable braid problems used for public key cryptosystems are flawy. The security of a braid public key cryptosystem can’t depend only on the hardness of conjugacy problems. By taking advantage of the non-conjugate transformation and multiple variant equations on braid groups, two intractable problems are proposed, and the hardness of these problems comes from the enlarged amount of variants. A new related public key algorithm and the analysis of its correctness, security, efficiency and parameter choice are subsequently presented. The new algorithm can resist current known attacks, and the ideal to combine some simple problems to a multiple variant difficult one is constructive for designing new public key algorithms.

    Reference
    [1]Shor PW.Polynomial-Time algorithms for prime factorization and discrete logarithms on a quantum computer.SIAM Journal on Computing,1997,26(5):1484-1509.
    [2]Cha JC,Cheon JH,Han JW,Ko KH,Lee SJ.An efficient implementation of braid groups.In:Boyd C,ed.Advances in Cryptology-Asiacrypt 2001.LNCS 2048,Berlin:Springer-Verlag,2001.144-156.
    [3]Ko KH,Lee SJ,Cheon JH,Han JW,Kang SJ,Park CS.New public-key cryptosystem using braid groups.In:Bellare M,ed.Advances in Cryptology-CRYPTO 2000.LNCS 1880,Berlin:Springer-Verlag,2000.166-183.
    [4]Lee E,Park JH.Cryptanalysis of the public key encryption based on braid groups.In:Biham E,ed.Advances in Cryptology-EuroCrypt 2003.LNCS 2656,Berlin:Springer-Verlag,2003.477-490.
    [5]Hughes J.A linear algebraic attack on the AAFG1 braid group cryptosystem.In:Batten L,Seberry J,eds.Information Security and Privacy-7th Australian Conf.,ACISP 2002.LNCS 2384,Berlin:Springer-Verlag,2002.176-189.
    [6]Cheon JH,Jun B.A polynomial time algorithm for the braid Diffie-Hellman conjugacy problem.In:Boneh D,ed.Advances in Cryptology-CRYPTO 2003.LNCS 2729,New York:Springer-Verlag,2003.212-225.
    [7]Hofheinz D,Steinwandt R.A practical attack on some braid group based cryptographic primitives.In:Desmedt YG,ed.Public Key Cryptography-PKC 2003.LNCS 2567,Berlin:Springer-Verlag,2003.187-198.
    [8]Dehornoy P.Braid-Based Cryptography.In:Group Theory,Statistics,and Cryptography,Contemporary Mathematics 360.New York:ACM Press,2004.5-33.
    [9]Garber D,Kaplan S,Teicher M,Tsaban B,Vishne U.Probabilistic solutions of equations in the braid group.Advances in Applied Mathematics,2005,35(3):323-334.
    [10]Lee SJ,Lee E.Potential weaknesses of the commutator key agreement protocol based on braid groups.In:Knudsen LR,ed.EUROCRYPT 2002.LNCS 2332,New York:Springer-Verlag,2002.14-28.
    [11]Anshel I,Anshel M,Goldfeld D.An algebraic method for public-key cryptography.Mathematical Research Letters,1999,6(3):287-291.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

汤学明,洪帆,崔国华.辫子群上的公钥加密算法.软件学报,2007,18(3):722-729

Copy
Share
Article Metrics
  • Abstract:4779
  • PDF: 5505
  • HTML: 0
  • Cited by: 0
History
  • Received:August 08,2005
  • Revised:April 03,2006
You are the first2038572Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063