• Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related
  • |
  • Cited by [13]
  • | |
  • Comments
    Abstract:

    In this paper, a similarity relation between two predicates is defined first. To a given predicate, the set of action for the predicate can be obtained by the similarity relation. Then, the domain knowledge is extracted from the common fluent in preconditions and effects of all actions for each set of action, and the formalism for the domain knowledge is given. Finally, the contradictions in the initial states and the goal states in a particular planning problem with domain knowledge can be discovered. The strategy of extracting the domain knowledge is integrated in the planner StepByStep, and the domain knowledge is the necessary theory when one predicate by action is realized in the planner.

    Reference
    [1]Fox M,Long D.The automatic inference of state invariants in TIM.Journal of AI Research,1998,9:367-421.
    [2]Cresswell S,Fox M,Long D.Extending TIM domain analysis to handle ADL constructs.In:McCluskey L,ed.Proc.of the AIPS 2002 Workshop on Knowledge Engineering Tools and Techniques for A.I.Planning.2002.
    [3]Blum A,Furst M.Fast planning through planning graph analysis.Artificial Intelligence,1997,90:281-300.
    [4]Thiébaux S,Hoffmann J,Nebel B.In defense of PDDL axioms.Artificial Intelligence,2005,168:38-69.
    [5]Bacchus F,Kabanza F.Using temporal logics to express search control knowledge for planning.Artificial Intelligence,2000,116:123-191.
    [6]Bacchus F,Kabanza F.Planning for temporally extended goals.Annals of Mathematics and Artificial Intelligence,1998,22:5-27.
    [7]TLPlan.2006.http://www.cs.toronto.edu/~fbacchus/tlplan.html
    [8]Kvarnstr(o)m J,Doherty P.TALplanner:A temporal logic based forward chaining planner.Annals of Mathematics and Artificial Intelligence (AMAI),2001,30:119-169.
    [9]Doherty P,Kvarnstr(o)m J.TALplanner:A temporal logic based planner.AI Magazine,Fall Issue,2001.
    [10]TALPlan.2006.http://www.ida.liu.se/~patdo/aiicssite1/kplab/projects/talplanner/index.html
    [11]Hoffmann J.FF:The fast-forward planning system.AI Magazine,2001,22(3):57-62.
    [12]Hoffmann J,Nebel B.The FF planning system:Fast plan generation through heuristic search.Artificial Intelligence Research,2001,14:253-302.
    [13]FF.2006.http://www.mpi-sb.mpg.de/~hoffmann/ff.html
    [14]Nguyen X,Kambhampati S,Nigenda RS.Planning graph as the basis for deriving heuristics for plan synthesis by state space and CSP search.Artificial Intelligence Journal,2002,135(1-2):73-123.
    [15]Nigenda RS,Nguyen X,Kambhampati S.AltAlt:Combining the advantages of graphplan and heuristic state search.ASU Technical Report,2000.
    [16]AltAlt.2006.http://rakaposhi.eas.asu.edu/altweb/altalt.html
    [17]Kautz H,Selman B.Unifying SAT-based and graph-based planning.In:Dean T,ed.Proc.of the IJCAI '99.Morgan Kaufmann Publishers,1999.318-325.
    [18]SATPLAN.2006.http://www.cs.washington.edu/homes/kautz/satplan/
    [19]Nilsson NJ.Artificial Intelligence:A New Synthesis.Morgan Kaufmann Publisher,1999.363-404.
    [20]Kautz H,Selman B.BLACKBOX:A new approach to the application of theorem proving to problem solving.In:Proc.of the Aips'98 Workshop on Planning as Combinatorial Search.1998.58-60.
    [21]Kautz H,Selman B.The role of domain-specific knowledge in the planning as satisfiability framework.In:Proc.of the 4th IJCAI.Menlo Park:AAAI Press,1998.181-189.
    [22]Blackbox.2006.http://www.cs.washington.edu/homes/kautz/satplan/blackbox/index.html
    [23]Refanidis I,Vlahavas I.The GRT planning system:Backward heuristic construction in forward state-space planning.Artificial Intelligence Research,2001,15:115-161.
    [24]Refanidis I,Vlahavas I.GRT:A domain independent heuristic for strips worlds based on greedy regression tables.In:Proc.of the 5th European Conf.on Planning (ECP '99).Durham:Springer-Verlag,1999.346-358.
    [25]GRT.2006.http://macedonia.uom.gr/~yrefanid/GRT/index.html
    [26]Edelkamp S,Helmert M.On the implementation of MIPS.In:Proc.of the Artificial Intelligence Planning and Scheduling (AIPS),Workshop on Decision-Theoretic Planning.2000.18-25.
    [27]Edelkamp S,Helmert M.The model checking integrated planning system.AI-Magazine (AIMAG),2001,67-71.
    [28]Lifschitz V.On the semantics of STRIPS.Reasoning about Actions and Plans,1987,1-9.
    [29]Mcdermott D.PDDL-The planning domain definition language.Technical Report,1998.
    [30]Fox M,Long D.PDDL 2.1:An extension to PDDL for expressing temporal planning domains.Technical Report.University of Durham,2002. [1]本文是以BlocksWorld领域为例来说明有关概念,但讨论的内容和所得的结论对基于STRIPS的规划领域都有效.
    [2]对动作进行置换的含义见第3节中的"定义3.2",本节是从宏观上介绍本文内容的组织结构. [1]在本文讨论谓词时,基本是以"正谓词"的形式来论述的,对"负谓词"的形式也同样有效,不再一一叙述. [1]|Para(Pd)|表示谓词Pd参数表的长度. [1]BlocksWorld领域中实现谓词的动作集见附录B.
    [2]当Pc=(not (Name1 P1 P2 … Pk))时,(not Pc)=(Name1 P1 P2 … Pk).
    Related
    Comments
    Comments
    分享到微博
    Submit
Get Citation

吴向军,姜云飞,凌应标.基于STRIPS的领域知识提取策略.软件学报,2007,18(3):490-504

Copy
Share
Article Metrics
  • Abstract:4441
  • PDF: 5633
  • HTML: 0
  • Cited by: 0
History
  • Received:April 04,2006
  • Revised:May 11,2006
You are the first2038627Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063