An Adaptive Ant Clustering Algorithm
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Enlightened by the behaviors of gregarious ant colonies, an artificial ant movement (AM) model and an adaptive ant clustering (AAC) algorithm for this model are presented. In the algorithm, each ant is treated as an agent to represent a data object. In the AM model, each ant has two states: sleeping state and active state. In the algorithm AAC, the ant’s state is controlled by both a function of the ant’s fitness to the environment it locates and a probability function for the ants becoming active. By moving dynamically, the ants form different subgroups adaptively, and consequently the whole ant group dynamically self-organizes into distinctive and independent subgroups within which highly similar ants are closely connected. The result of data objects clustering is therefore achieved. This paper also present a method to adaptively update the parameters and the ants’ local movement strategies which greatly improve the speed and the quality of clustering. Experimental results show that the AAC algorithm on the AM model is much superior to other ant clustering methods such as BM and LF in terms of computational cost, speed and quality. It is adaptive, robust and efficient, and achieves high autonomy, simplicity and efficiency. It is suitable for solving high dimensional and complicated clustering problems.

    Reference
    Related
    Cited by
Get Citation

徐晓华,陈崚.一种自适应的蚂蚁聚类算法.软件学报,2006,17(9):1884-1889

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 13,2004
  • Revised:August 29,2005
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063