A Feature Matching Method: Sparse Feature Tree
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Computational efficiency is an important concern for machine learning algorithms, especially for applications on large test sets or in real-time scenarios. In this paper, a novel data structure and the corresponding algorithms for the execution system of the maximum entropy model are described. This data structure, called sparse feature tree, is used to represent the feature set to speed up the process of feature search (or feature matching), so that speed up the process of probability calculation and execution system. Experiments on chunking recognition and Part-of-Speech tagging are conducted to show that the new data structure greatly speeds up the feature matching process while keeping the same space complexity.

    Reference
    Related
    Cited by
Get Citation

周雅倩,黄萱菁,吴立德.一种特征匹配方法:稀疏特征树.软件学报,2006,17(5):1026-1033

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 14,2005
  • Revised:August 25,2005
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063