Adaptive Appearance Model Robust to Background Variations
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A novel method of dynamic object modeling for visual tracking is presented. The Haar transformation is first applied on the incoming image of the video to get features, which are over-complete description of the image. Then, the Fisher criteria are employed for ranking features based on their contributions to the discrimination between the tracked objects and the background. After that, the objects are modeled by the subset of top-ranked features. During tracking, a Kalman filter is used to predict the upcoming destinations of the tracked objects and the features are re-ranked by the discrimination between the objects and predicted locations. Thereafter, objects models will be updated and only discriminative features are kept in it. This proposed strategy aims to maximally maintain the basic discrimination and reduce computational cost simultaneously. To evaluate the performance of the proposed method, several experiments have been conducted on long video sequences. The experimental results show that the proposed method can handle various uncertain factors under the real world conditions and successfully track the objects in real-time.

    Reference
    Related
    Cited by
Get Citation

王建宇,陈熙霖,高文,赵德斌.背景变化鲁棒的自适应视觉跟踪目标模型.软件学报,2006,17(5):1001-1008

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 23,2004
  • Revised:May 20,2005
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063