Fuzzy Support Vector Machine Based on Affinity Among Samples
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Since SVM is very sensitive to outliers and noises in the training set, a fuzzy support vector machine algorithm based on affinity among samples is proposed in this paper. The fuzzy membership is defined by not only the relation between a sample and its cluster center, but also those among samples, which is described by the affinity among samples. A method defining the affinity among samples is considered using a sphere with minimum volume while containing the maximum of the samples. Then, the fuzzy membership is defined according to the position of samples in sphere space. Compared with the fuzzy support vector machine algorithm based on the relation between a sample and its cluster center, this method effectively distinguishes between the valid samples and the outliers or noises. Experimental results show that the fuzzy support vector machine based on the affinity among samples is more robust than the traditional support vector machine, and the fuzzy support vector machines based on the distance of a sample and its cluster center.

    Reference
    Related
    Cited by
Get Citation

张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法.软件学报,2006,17(5):951-958

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 24,2005
  • Revised:November 08,2005
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063