Online Aggregation on Data Cubes Without Auxiliary Information
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Typically, online aggregation algorithms on multi-dimensional data need additional auxiliary data for estimation, which make the performance of the storage and maintenance of the data cube worse. This paper presents the PE (progressively estimate) and HPE (hybrid progressively estimate) to progressively estimate the answers for range queries in the QC-Trees. MPE (multiple progressively estimate) is also proposed to simultaneously evaluate batches of range-sum queries. The difference between the algorithms and other online aggregation algorithms on data cubes is that these algorithms do not need any auxiliary information. The idea of this estimation method is to utilize the data stored in the QC-Tree itself. As a result, this algorithm will not deteriorate the performance of the storage and maintenance of the data cubes. Analysis and experimental results show that the algorithms provide an accurate estimation in far less time than the normal algorithms.

    Reference
    Related
    Cited by
Get Citation

李红松,黄厚宽.无须附加空间的数据立方体联机聚集.软件学报,2006,17(4):806-813

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 30,2005
  • Revised:October 10,2005
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063