Localization of Singular Points in Fingerprint Images Based on the Gaussian-Hermite Moments
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In most fingerprint classification and identification algorithms, extracting the number and precise location of singular points (core and delta) is of great importance. In this paper, an adaptive algorithm for singular points detection is proposed, which is based on the behavior of Gaussian-Hermite moments. In order to detect singular point accurately, the distribution of Gaussian-Hermite moments of different orders of the fingerprint image in multiple scales is used. A PCA-based (principal component analysis) method is used to analyze the distribution of Gaussian-Hermite of fingerprint image. Experimental results show that the proposed algorithm is able to locate singular points in fingerprint with high accuracy.

    Reference
    Related
    Cited by
Get Citation

王林,戴模.基于Gaussian-Hermite矩的指纹奇异点定位.软件学报,2006,17(2):242-249

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 28,2004
  • Revised:July 11,2005
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063