An Improved Particle Swarm Optimization Based on Self-Adaptive Escape Velocity
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To deal with the problem of premature convergence and slow search speed, this paper proposes a novel particle swarm optimization (PSO) called self-adaptive escape PSO, which is guaranteed to converge to the global optimization solution with probability one. Considering that the organisms have the phenomena of escaping from the original cradle when they find the survival density is too high to live, this paper uses a special mutation –escape operator to make particles explore the search space more efficiently. The novel strategy produces a large speed value dynamically according to the variation of the speed, which makes the algorithm explore the local and global minima thoroughly at the same time. Experimental simulations show that the proposed method can not only significantly speed up the convergence, but also effectively solve the premature convergence problem.

    Reference
    Related
    Cited by
Get Citation

赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析.软件学报,2005,16(12):2036-2044

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 25,2004
  • Revised:April 10,2005
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063