Active Discriminant Function for Handwriting Recognition
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A novel recognition method called Active Discriminant Function (ADF) for handwriting recognition is presented. First, statistical feature based Active Prototype Model (APM) in the principal subspace is proposed and an optimal APM corresponding to an unknown pattern is obtained. Second, ADF that is a weighted summation of two distances is proposed. One measures the distance between an unknown pattern and the principal subspace; the other measures the distance between an unknown pattern and the minor subspace. Third, as parameters of ADF, constraints for APM are optimized by applying Minimum Classification Error (MCE) criterion. The optimal constraints help to improve recognition accuracy of ADF. Finally, experiments are conducted on handwritten financial Chinese characters used in bank bill, and empirical results demonstrate that ADF is fairly promising for handwriting recognition.

    Reference
    Related
    Cited by
Get Citation

孙广玲,刘家锋,唐降龙,石大明,赵巍.基于主动判别函数的手写体识别.软件学报,2005,16(4):523-532

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 29,2003
  • Revised:November 03,2004
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063