• Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • |
  • Cited by [5]
  • | |
  • Comments
    Abstract:

    Jacquard image segmentation is the linchpin of jacquard pattern design. Curve evolution model is a popular method for image segmentation. However, it cannot detect image features in the presence of noise. The Mumford-Shah model is more robust than curve evolution model to detect discontinuities under noisy environment, so it is more suitable for segmentation of noisy jacquard images. In this paper, an algorithm is presented to implement the numerical solving of the Mumford-Shah model, which combines the merits of finite element method and quasi-Newton method. First, a discrete version of the model is defined on finite element spaces over adaptive triangulation. Then an adjustment scheme for the triangulation is enforced to improve the iteration efficiency before current iteration begins. Finally, a minimization method based on quasi-Newton algorithm is applied to find the absolute minimum of the discrete model in the sense of Gamma-convergence. The proposed algorithm works well when it is applied to segment noisy jacquard images.

    Reference
    [1]Neubauer C. Segmentation of defects in textile fabric. In: Proc. of the 11th IAPR Int'l Conf. on Computer Vision and Applications. Hague: IEEE Computer Society, 1992. 688-691. http://intl.ieeexplore.ieee.org/xpl/abs_free.jsp-arNumber=201654
    [2]Sari SH, Goddard JS. Robust defect segmentation in woven fabrics. In: Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition. Santa Barbara: IEEE Computer Society, 1998. 938-944. http://ieeexplore.ieee.org/xpl/abs_free.jsp- arNumber=698717
    [3]Sari SH, Goddard JS. Vision system for on-loom fabric inspection. IEEE Trans. on Industry Applications, 1999,35(6):1252-1259.
    [4]Xu CY, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing, 1998,7(3):359-369.
    [5]Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int'l Journal of Computer Vision, 1997,22(1):61-79.
    [6]Yezzi A, Kichenassamy S, Kumar A, Olver P, Tannenbaum A. A geometric snake model for segmentation of medical imagery. IEEE Trans. on Medical Imaging, 1997,16(2):199-209.
    [7]Zhu FP, Tian J, Lin Y, Ge XF. Medical image segmentation based on level set method. Journal of Software, 2002,13(9):1866-1872 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/13/1866.pdf
    [8]Yu HC, Wang DJ, Tang ZS, Tang L. Singular points in level set evolution and revised narrow banding algorithm. Journal of Software, 2003,14(4):810-817 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/14/810.htm
    [9]Petitot J. An introduction to the Mumford-Shah segmentation model. Journal of Physiology-Paris, 2003,97(2/3):335-342.
    [10]Carriero M, Leaci A, Tomarelli F. Calculus of variations and image segmentation. Journal of Physiology-Paris, 2003,97(2/3): 343-353.
    [11]Braides A, Maso GD. Non-Local approximation of the Mumford-Shah functional. Calculus of Variations and Partial Differential Equations, 1997,5(4):293-322.
    [12]Gobbino M. Finite difference approximation of the Mumford-Shah functional. Communications on Pure and Applied Mathematics, 1998,51(5):197-228.
    [13]Negri M. The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah Functional. Numerical Functional Analysis and Optimization, 1999,20(10):957-982.
    [14]Bourdin B, Chambolle A. Implementation of an adaptive finite element approximation of the Mumford-Shah functional. Numerische Mathematik, 2000,85(4):609-646.
    [15]Laug P, Borouchaki H. The BL2D mesh generator: Beginner's guide, user's and programmer's manual. Technique Report, No.0194, Paris: National Institute for Research in Computer Science and Control, 1996.
    [16]Kissin E, Shulman VS. Classes of operator-smooth functions-II. Operator-Differentiable functions. Integral Equations and Operator Theory, 2004,49(2):165-210.
    [7]朱付平,田捷,林瑶,葛行飞.基于Level Set方法的医学图像分割.软件学报,2002,13(9):1866-1872. http://www.jos.org.cn/ 1000-9825/13/1866.pdf
    [8]于洪川,王德军,唐泽圣,唐龙.水平集演化中的奇点与改进的窄带算法.软件学报,2003,14(4):810-817. http://www.jos.org.cn/ 1000-9825/14/810.htm
    Comments
    Comments
    分享到微博
    Submit
Get Citation

冯志林,尹建伟,陈刚,董金祥.一种提花织物图像的有限元分割算法.软件学报,2005,16(1):58-66

Copy
Share
Article Metrics
  • Abstract:4422
  • PDF: 5989
  • HTML: 0
  • Cited by: 0
History
  • Received:November 26,2003
  • Revised:June 10,2004
You are the first2032732Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063