• Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related [20]
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    In order to determine an optimal route, network performance and cost of many network providers must be compared when end-users visit the content provided by content providers under certain QoS constraints in multi-provider network. The correlative network information is collected by mobile Agent. The delay and cost between any two nodes of network is set to random variables. A minimum model with the expectation of cost and delay value is presented in a stochastic network. The optimal solution of the mobile Agent route from a service provider to a content provider is computed by using genetic algorithms. The obtained simulation results show the effectiveness of the above approach.

    Reference
    [1]Falchuk B, Cheng KE, Lin FJ, Pinheiro B, Jokubaitis V. An agile server for cross-provider service peering and aggregation. IEEE Communications Magazine, 2003,41(3):126~136.
    [2]Ye J, Papavassiliou S. Dynamic market-driven allocation of network resources using genetic algorithms in a competitive electronic commerce marketplace. Int'l Journal of Network Management, 2001,11(6):375~385.
    [3]Papavassiliou S, Puliafito A, Tomachio O, Ye J. Mobile Agent-based approach for efficient network management and resource allocation: Framework and applications. IEEE Journal on Selected Areas in Communications, 2002,20(4):858~872.
    [4]Bivens A, Gao L, Hulber MF, Szymanski B. Agent-Based network monitoring. In: Proc. of the Int'l Conf. on Autonomous Agents (Agents'99). Seattle, 1999. http://www.cs.cf.ac.uk/User/O.F.Rana/agents99/papers/okpapers/order/szymanski.ps
    [5]Li YW, Meng LM, Qi F. The study and perspective of mobile Agent applications in network management environment. Acta Electronic Sinica, 2002,30(4):564~569 (in Chinese with English abstract).
    [6]Puliafito A, Tomachio O. Using mobile Agents to implement flexible network management strategies. Computer Communications, 2000,23(4):708~719.
    [7]Gavalas D, Greenwood D, Ghanbari M, O'Mahony M. Implementing a highly scalable and adaptive Agent-based management framework. In: Proc. of the IEEE Global Communications Conf. (Globecom 2000). 2000. 1458~1462. http://www.it.iitb.ac.in/ ~it612/resources/repository/GLOBECOM00/vol3/Implementing_a_highly_scalable.pdf
    [8]Feng J, Gu GQ. Research on QoS routing based on uncertain parameters. Journal of Computer Research and Development, 2002,39(5):533~539 (in Chinese with English abstract).
    [9]Tanterdtid S, Worawit S, Watit B. An optimum virtual paths network-based ATM network using the genetic algorithm. Int'l Journal of Network Management, 1998,8(3):159~169.
    [10]Morawek R. Threshold route optimization algorithm for information retrieving mobile Agents. In: Proc. of the 6th Int'l Workshop on Cooperative Information Agents VI, 2002. London: Springer-Verlag, 2002. 312~320. http://www.morawek.at/publications/ constThreshold.pdf
    [11]Wang ZY, Shi BX, Liu W. A distributed dynamic delay-constrained least-cost multicast routing heuristic. Journal of Software, 2001,12(1):1~10 (in Chinese with English abstract).
    [12]Liu Y, Wu JP. A delay-constrained multicast routing algorithm based on heuristic genetic algorithm. Journal of Computer Research and Development, 2003,40(3):381~386 (in Chinese with English abstract).
    [13]Tao J, Gu GQ. Application research on QoS-based routing using ant algorithm and based on mobile-Agent. Journal of Computer Research and Development, 2003,40(2):180~186 (in Chinese with English abstract).
    [14]Wang Z, Crowcroft J. Quality-of-Service routing for supporting multimedia applications. IEEE Journal on Selected Areas in Communications, 1996,14(7):1228~1234.
    [15]Sorte DD, Reali G. Minimum price inter-domain routing algorithm. IEEE Communications Letters, 2002,6(4):165~167.
    [16]Berger J, Sassi M, Salois M. A hybrid genetic algorithm for the vehicle routing problem with time windows and itinerary constraints. In: Banzhaf W, Daida JM, Eiben AE, Garzon MH, Honavar V, Jakiela MJ, Smith RE, eds. Proc. of the Genetic and Evolutionary Computation Conf. 1999 (GECCO'99). Vancouver, Morgan Kaufmann, 1998. 44~51.
    [5]李冶文,孟洛明,亓峰.网络管理环境下移动代理技术应用研究的现状、问题与展望.电子学报,2002,30(4):564~569.
    [8]冯径,顾冠群.基于不确定参数的Qos路由研究.计算机研究与发展,2002,39(5):533~539.
    [11]王征应,石冰心,刘伟.一种延时约束费用最小分布动态组播路由算法.软件学报,2001,12(1):1~10.
    [12]刘莹,吴建平.求解带时延约束组播路由问题的启发式遗传算法.计算机研究与发展,2003,40(3):381~386.
    [13]陶军,顾冠群.基于移动代理的蚂蚁算法在Qos路由选择中的应用研究.计算机研究与发展,2003,40(2):180~186.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

赵慧,侯建荣,施伯乐.多提供商网络环境中移动代理路径寻优.软件学报,2004,15(8):1237-1244

Copy
Share
Article Metrics
  • Abstract:4153
  • PDF: 5494
  • HTML: 0
  • Cited by: 0
History
  • Received:May 09,2003
  • Revised:August 12,2003
You are the first2038704Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063