Fuzzy Kernel Clustering with Outliers
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Outliers are data values that lie away from the general clusters of other data values. It may be that an outlier implies the most important feature of a dataset. In this paper, a new fuzzy kernel clustering algorithm is presented to locate the critical areas that are often represented by only a few outliers. Through mercer kernel functions, the data in the original space are firstly mapped to a high-dimensional feature space. Then a modified objective function for fuzzy clustering is introduced in the feature space. An additional weighting factor is assigned to each vector in the feature space, and the weight value is updated using the iterative functions derived from the objective function. The final weight of a datum represents a kind of representativeness of the corresponding datum. With these weights, the experts can identify the outliers easily. The simulations demonstrate the feasibility of this method.

    Reference
    Related
    Cited by
Get Citation

沈红斌,王士同,吴小俊.离群模糊核聚类算法.软件学报,2004,15(7):1021-1029

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 11,2003
  • Revised:October 08,2003
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063