Fuzzy Partitional Clustering Algorithms
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Fuzzy partitional clustering algorithms are widely used in pattern recognition field. Until now, more and more research results on them have been developed in the literature. In order to study these algorithms systematically and deeply, they are reviewed in this paper based on c-means algorithm, from metrics, entropy, and constraints on membership function or cluster centers. Moreover, the advantages and disadvantages of the typical fuzzy partitional algorithms are discussed. It is pointed out that the standard FCM algorithm is robust to the scaling transformation of dataset, while others are sensitive to such transformation. Such conclusion is experimentally verified when implementing the standard FCM and the maximum entropy clustering algorithm. Finally, the problems existing in these algorithms and the prospects of the fuzzy partitional algorithms are discussed.

    Reference
    Related
    Cited by
Get Citation

张敏,于剑.基于划分的模糊聚类算法.软件学报,2004,15(6):858-868

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 01,2004
  • Revised:
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063