• Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related
  • |
  • Cited by [29]
  • | |
  • Comments
    Abstract:

    Naive Bayes classifier is a simple and effective classification method, but its attribute independence assumption makes it unable to express the dependence among attributes, and affects its classification performance. On the basis of analyzing the classification principle of Bayesian classification model and a variant of Bayes theorem, a new classification model based on Bayes theorem, DLBAN (double-level Bayesian network augmented naive Bayes), which adds the dependence among attributes by selecting the key attributes, is proposed. DLBAN classifier is compared with Naive Bayes classifier and TAN (tree augmented naive Bayes) classifier by an experiment. Experimental results show this model has higher classification accuracy in most data sets.

    Reference
    [1]Friedman N,Geiger D,Goldszmidt M.Bayesian network classifiers.Machine Learning,1997,29(2-3):131~163.
    [2]Langley P,Iba W,Thompson K.An analysis of Bayesian classifiers.In:Rosenbloom P,Szolovits P,eds.Proc.of the 10th National Conf.on Artificial Intelligence.Menlo Park:AAAI Press,1992.223~228.
    [3]Kononenko I.Seminaive Bayesian classifier.In:Kodratoff Y,ed.Proc.of the 6th European Working Session on Learning.New York:Springer-Verlag,1991.206~219.
    [4]Pazzani MJ.Searching for dependencies in Bayesian classifiers.In:Fisher D,Lenz HJ,eds.Learning from Data:Artificial Intelligence and Statistics V.New York:Springer-Verlag.1996.239~248.
    [5]Langley P,Sage S.Induction of selective Bayesian classifiers.In:Mantaras RL,Poole DL,eds.Proc.of the 10th Conf.on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers,1994.399~406.
    [6]Webb GI,Pazzani MJ.Adjusted probability naive Bayesian induction.In:Antoniou G,Slaney JK,eds.Proc.of the 11th Australian Joint Conf.on Artificial Intelligence.Berlin:Springer-Verlag,1998.285~295.
    [7]Kohavi R.Scaling up the accuracy of Naive-Bayes classifiers:A decision-tree hybrid.In:Simoudis E,Han J,Fayyad UM,eds.Proc.of the 2nd Int'l Conf.on Knowledge Discovery and Data Mining.Menlo Park:AAAI Press,1996.202~207.
    [8]Keogh EJ,Pazzani MJ.Learning augmented Bayesian classifiers:A comparison of distribution-based and classification-based approaches.In:Heckerman DE,Whittaker J,eds.Proc.of the Uncertainty'99:The 7th Int'l Workshop on Artificial Intelligence and Statistics.San Francisco:Morgan Kaufmann Publishers,1999.225~230.
    [9]Cheng J,Greiner R.Comparing Bayesian network classifiers.In:Laskey KB,Prade H,eds.Proc.of the 15th Conf.on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers,1999.101~108.
    [10]Chickering DM,Geiger D,Heckerman D.Learning Bayesian networks is NP-complete.In:Fisher DH,Lenz HJ,eds.Learning from Data:Artificial Intelligence and Statistics V.New York:Springer-Verlag,1996.121~130.
    [11]Mitchell TM.Machine Learning.New York:McGraw-Hill Companies,Inc.,1997.154~200.
    [12]Cheng J,Bell D,Liu W.Learning belief networks from data:An information theory based approach.Artificial Intelligence,2002,137(1-2):43~90.
    [13]Lu RQ.Artificial Intelligence.Beijing:Science Press,1989.1134~1147(in Chinese).
    [14]Zheng Z,Webb GI.Lazy learning of Bayesian rules.Machine Learning,2000,41(1):53~84.
    [15]Witten IH,Frank E.Data Mining:Practical Machine Learning Tools and Techniques with Java Implementations.Seattle:Morgan Kaufmann Publishers,2000.265~314.
    [16]陆汝钤.人工智能.北京:科学出版社,1989.1134~1147.
    Related
    Comments
    Comments
    分享到微博
    Submit
Get Citation

石洪波,王志海,黄厚宽,励晓健.一种限定性的双层贝叶斯分类模型.软件学报,2004,15(2):193-199

Copy
Share
Article Metrics
  • Abstract:5093
  • PDF: 9248
  • HTML: 0
  • Cited by: 0
History
  • Received:January 22,2003
  • Revised:July 25,2003
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063