Mining Frequent Closed Patterns by Adaptive Pruning
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The set of frequent closed patterns determines exactly the complete set of all frequent patterns and is usually much smaller than the laster. Yet mining frequent closed patterns remains to be a memory and time consuming task. This paper tries to develop an efficient algorithm to solve this problem. The compound frequent item set tree is employed to organize the set of frequent patterns, which consumes much less memory than other structures. The tree is grown quickly by integrating depth first and breadth first search strategies, opportunistically choosing between two different structures to represent projected transaction subsets, and heuristically deciding to build unfiltered pseudo or filtered projections. Efficient pruning methods are used to reduce the search space. The balance of the efficiency and scalability of tree growth and pruning maximizes the performance. The experimental results show that the algorithm is a factor of five to three orders of magnitude more time efficient than several recently proposed algorithms, and is also the most scalable one. It can be used in the discovery of non-redundant association rules, sequence analysis, and many other data mining problems.

    Reference
    Related
    Cited by
Get Citation

刘君强,孙晓莹,庄越挺,潘云鹤.挖掘闭合模式的高性能算法.软件学报,2004,15(1):94-102

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 24,2002
  • Revised:September 05,2003
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063