Lp Simultaneous Approximation by Neural Networks with One Hidden Layer
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    It is shown in this paper by a constructive method that for any Lebesgue integrable functions defined on a compact set in a multidimensional Euclidian space, the function and its derivatives can be simultaneously approximated by a neural network with one hidden layer. This approach naturally yields the design of the hidden layer and the convergence rate. The obtained results describe the relationship between the rate of convergence of networks and the numbers of units of the hidden layer, and generalize some known density results in uniform measure.

    Reference
    Related
    Cited by
Get Citation

曹飞龙,李有梅,徐宗本.单隐层神经网络的Lp同时逼近.软件学报,2003,14(11):1869-1874

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 19,2002
  • Revised:March 04,2003
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063