A Statistical Query Expansion Model Based on Query Logs
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Ambiguity of query terms has been a long-standing problem in information retrieval field, which becomes more serious in Web searching. A method for automatic query expansion based on query logs obtained from users?daily usage is suggested. This model establishes probabilistic relationship between terms in documents and in user queries through statistical learning from the log, and selects high-related expansion terms based on Bayesian theory. These expansion terms are added into the original query to formulate a new one in order to improve the effectiveness of retrieval. Experimental results show that this technique is more adaptive to Web searching, and can improve the precision of document retrieval markedly compared with conventional ones.

    Reference
    Related
    Cited by
Get Citation

崔航,文继荣,李敏强.基于用户日志的查询扩展统计模型.软件学报,2003,14(9):1593-1599

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 12,2002
  • Revised:August 13,2002
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063