A Spatial Feature Selection Method Based on Maximum Entropy Theory
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Feature selection has an important application in the field of pattern recognition and data mining etc. However, in real world domains, if there are spatial data operated in the application, the performance of feature selection will be decreased because of without considering the characteristic of spatial data. In this paper, a feature selection method from the point of the characteristic of spatial data, named MEFS (maximum entropy feature selection), is proposed. Based on the theory of maximum entropy, MEFS uses mutual information and Z-test technologies, and takes two-step method to execute feature selection. The first step is predicate selection, and the second step is to choose relevant dataset corresponding to each predicate. At last, the experiments between feature selection algorithms MEFS and RELIEF, and between ID3 classification algorithm and classification algorithm based on MEFS are carried out. The experimental results show that the MEFS algorithm not only saves feature selection and classification time, but also improves the quality of classification.

    Reference
    Related
    Cited by
Get Citation

宋国杰,唐世渭,杨冬青,王腾蛟.基于最大熵原理的空间特征选择方法.软件学报,2003,14(9):1544-1550

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 09,2002
  • Revised:December 23,2002
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063