An Improved Elman Model and Recurrent Back-Propagation Control Neural Networks
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Two improved Elman neural networks, output-input feedback Elman network and output-hidden feedback Elman network are presented based on the Elman neural network. By using the output-input feedback Elman network as a passageway of the error back propagation, a recurrent back propagation control neural network model is developed. The stability of the improved Elman neural networks is proved in the sense of Lyapunov stability theory. The optimal adaptive learning rates are obtained, which can guarantee the stable convergence of the improved Elman networks. The ultrasonic motor is simulated by using the Elman and improved Elman networks respectively. Besides simulating the speed of the ultrasonic motor successfully, some useful results are also obtained. According to the results, the different network models based on the sampling situation in the fieldwork can be chosen. Numerical results show that the recurrent back propagation control neural network controller has good effectiveness for various kinds of reference speeds of the ultrasonic motor.

    Reference
    Related
    Cited by
Get Citation

时小虎,梁艳春,徐旭.改进的Elman模型与递归反传控制神经网络.软件学报,2003,14(6):1110-1119

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 20,2002
  • Revised:September 17,2002
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063