An On-Line Structure Learning Algorithm of Belief Network
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    An on-line structure-learning algorithm of belief network is proposed. The basic idea is to incrementally update the structure and parameters of a belief network after each group of data samples is received. The algorithm consists of two steps. The first step is to update the current belief network based on newly received data samples using incremental updating rules, including parameter incremental updating rule and three structure incremental updating rules, which are adding edge, deleting edge and reverting edge. The second step is to use the result selection criterion to select the most appropriate result from the set of candidates resulted by the first step. The selection criterion fulfills the desire to balance the consistency of the result with the newly received data against the distance between the result and the previous model. Experimental results show that the algorithm can efficiently perform on-line learning of belief network structure. Since on-line learning does not need history data and can adapt to the variation of the problem domain, this algorthm is suitable to model those domains that vary with time.

    Reference
    Related
    Cited by
Get Citation

刘启元,张聪,沈一栋,汪成亮.信度网结构在线学习算法.软件学报,2002,13(12):2297-2304

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 20,2001
  • Revised:April 24,2001
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063