An Image Retrieval Relevance Feedback Algorithm Based on the Bayesian Classifier
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The biggest problem in content-based image retrieval (CBIR) is a big gap between high-level semantic contents and low-level features. As an effective solution, relevance feedback has been put on many efforts for the past few years. In this paper, a new relevance feedback approach with progressive learning capability is proposed. It is based on a Bayesian classifier and treats positive and negative feedback examples with different strategies. It can utilize previous users' feedback information to improve its retrieval ability. The experimental results show that this algorithm achieves high accuracy and effectiveness on real-world image collections.

    Reference
    Related
    Cited by
Get Citation

苏中,张宏江,马少平.基于贝叶斯分类器的图像检索相关反馈算法.软件学报,2002,13(10):2001-2006

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 21,2000
  • Revised:April 03,2001
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063