Semi-Supervised Web Mining Based on Bayes Latent Semantic Model
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the increasing of information on Internet, Web mining has been the focus of data mining. Web classification predicts the labels of Web documents by learning lots of training examples with labels. It is very expensive to get these examples by manual. Web clustering groups the similar Web documents by a certain of metric of similarity. But the classical algorithms of clustering are aimless in searching the solution space and absent of semantic characters. In this paper, a semi-supervised learning strategy consists of tow stages is put forward.The fist atage,labels the documents the documents that include latent class variables by using Bayes latent semantic model.The second stage,based on the results from the first stage,labels the documents excluding latent class variables with the Naive Bayes models.Experimental results show that this algorithm has good precision and recall rate.

    Reference
    Related
    Cited by
Get Citation

宫秀军,史忠植.基于Bayes潜在语义模型的半监督Web挖掘.软件学报,2002,13(8):1508-1514

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 04,2001
  • Revised:September 06,2001
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063