A Simplification Algorithm to Support Vector Machines for Regression
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the computational complexity resulted from the large amounts of support vectors when the support vector machines (SVMs) are used in function estimation, a simplification algorithm is presented to reduce the number of support vectors and simplify applications. By the adaptation of the simplification algorithm, the LS-SVM (least square support vector machine) algorithm can be combined with SMO (sequential minimal optimization) algorithm to achieve good results with high learning efficiency and a few number of support vectors.

    Reference
    Related
    Cited by
Get Citation

田盛丰,黄厚宽.回归型支持向量机的简化算法.软件学报,2002,13(6):1169-1172

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 23,2000
  • Revised:April 03,2001
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063