An N-Gram Prediction Model Based on Web-Log Mining
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As an increasing number of users access information on the Web, there is a great opportunity to learn about the users?probable actions in the future from the server logs. In this paper, an n-gram based model is presented to utilize path profiles of users from very large data sets to predict the users?future requests. Since this is a prediction system, the recall cannot be measured in a traditional sense. Therefore, the notion of applicability is presented to give a measure of the ability to predict the next document.The new model is based on a simple extension of existing point-based models for such predictions,but the results show that by sacrificing the applicability somewhat one can gin a great deal in prediction precision.The result can potentially be applied to awide range of applications on the Web,including pre-sending,pre-fetching,enhancement of recommendation systems as well as Web caching po;icies.The tests are based on three realistic Web logs.The new algorithm shows a marked improvement in precision and applicability over previous approaches.

    Reference
    Related
    Cited by
Get Citation

苏中,马少平,杨强,张宏江.基于Web-Log Mining的N元预测模型.软件学报,2002,13(1):136-141

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 03,2000
  • Revised:July 20,2000
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063