Genetic Algorithms Using Gradients of Object Functions
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Most genetic algorithms do not use the knowledge in the related problem fields completely when searching the approximate solutions. A new kind of genetic algorithm with modified fitness functions the presented in this paper. In this algorithms, both the function value at the searching point and the function change rate at the point are combined into fitness functions. It makes the chromosome code chosen by probability be able to have both smaller function value (for minimum problem) and higher function change rate. The experimental results show that the new algorithm is convergent much faster than the standard genetic algorithm is.

    Reference
    Related
    Cited by
Get Citation

何新贵,梁久祯.利用目标函数梯度的遗传算法.软件学报,2001,12(7):981-986

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 05,2001
  • Revised:March 05,2001
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063