Nonlinear Correlation Tracking Technique in Data Mining of Financial Markets
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Financial data mining is one of the most challenging research directions in information society. Financial data with random characteristics make it difficult to find out the rule hidden in data. In this paper, it is pointed out that correlation coefficient can not capture nonlinear information, which is the serious defect of classic correlation analysis. Furthermore, the properties of the high-order correlation coefficient are discussed, and it is proved that high-order correlation can not only describe the hidden nonlinear correlation, but also fill up the space between classic correlation and independence. The computational simplicity makes the high-order correlation coefficient be an effective technique to track nonlinear relation between variables. Finally, the above results are applied to the correlative analysis between stock price and stock trading volume, and the computing results show that the high-order correlation coefficient can track the time-varying nonlinear characteristics.

    Reference
    Related
    Cited by
Get Citation

易东云,张维明,杜小勇.金融数据挖掘中的非线性相关跟踪技术.软件学报,2000,11(12):1581-1586

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 25,1998
  • Revised:October 18,1999
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063