Multidegree Reduction of Bézier Curves with Conditions of Endpoint Interpolations
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, the authors study the multidegree reduction of Bézier curves with arbitrary degree interpolation conditions of two endpoint. For the given endpoint interpolation conditions, a new approximation method of multidegree reduction is presented. Using Chebyshev polynomial approximation theory, the nearly best uniform approximation under the interpolation conditions of endpoints can be obtained. This algorithm is easy to implement and simple for error estimation. The approximation effects of the degree reduction curves are very good. Combined with subdivision algorithm, it can reach a higher rate of error convergence.

    Reference
    Related
    Cited by
Get Citation

陈国栋,王国瑾.带端点插值条件的Bézier曲线降多阶逼近.软件学报,2000,11(9):1202-1206

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 28,2000
  • Revised:April 13,2000
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063