Functional Compositions via Shifting Operators for Bézier Patches and Their Applications
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    There are two kinds of Bézier patches which are represented by different base functions, namely the triangular Bézier patch and the rectangular Bézier patch. In this paper, two results about these patches are obtained by employing functional compositions via shifting operators. One is the composition of a rectangular Bézier patch with a triangular Bézier function of degree 1, the other is the composition of a triangular Bézier patch with a rectangular Bézier function of degree 1×1. The control points of the resultant patch in either case are the linear convex combinations of the control points of the original patch. With the shifting operators, the respective procedure becomes concise and intuitive. The potential applications of the two results include conversions between two kinds of Bézier patches, exact representation of a trimmed surface, natural extension of original patches, etc.

    Reference
    Related
    Cited by
Get Citation

冯结青,彭群生. Bézier曲面的函数复合及其应用.软件学报,1999,10(12):1316-1321

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 19,1998
  • Revised:May 26,1998
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063