In order to reduce the complexity in the calculation model of Nilsson's probabilistic logic, the authors presented a new approach with the super-tree-like decomposition model in this paper, and proved the completeness theorem of the given method.
1 Nilsson Nils J. Probabilitic logic. Artificial Intelligence, 1986,28(1):71~87
2 张晨东,陈火旺,刘凤岐,概率逻辑公式集分解的合并聚类算法.软件学报,1997,8(6):441~447
(Zhang Chen-dong, Chen Huo-wang, Liu Feng-qi. A clustering-algorithm for decomposition of probabilistic logic formula set. Journal of Software, 1997,8(6):441~447)
3 张晨东,陈火旺,王兵山等.概率逻辑推理的弱相关分解方法.计算机学报,1997,20(10):894~898
(Zhang Chen-dong, Chen Huo-wang, Wang Bing-shan et al. A weak-dependent-decomposition approach for probabilistic logic. Chinese Journal of Computers, 1997,20(10):894~898)
4 Dimitris Kavvadias, Christos H. Papadimitriou, a linear programming approach to reasoning about probabilities. Annals of Mathematics and Artificial Intelligence, 1990,(1):189~205
5 Andersen K A. Characterizing consistency in probabilistic logic for a class of Horn clauses. Mathematical Programming, 1994,(66):257~271
6 Anderser K A, Hooker J N. Bayesian logic. Decision support systems, 1994,(11):191~210
7 Alan M. Frisch and peter haddawy, anytime deduction for probabilistic logic. Artificial Intelligence, 1994,69(1):93~122
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.