Interval-wavelets Neural Networks (ⅠⅠ)——Properties and Experiment
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the present paper, it is proved that the interval wavelets neural networks has universal and L2 approximation properties and is a consistent function estimator. Convergence rates associated with these properties do not decrease as d increases in d-dimensional function learning, i.e., the “curse of dimensionality” is eliminated substantially. In the experiments, the proposed interval wavelet neural networks, compared to traditional wavelet networks, has performed better.

    Reference
    Related
    Cited by
Get Citation

高协平,张 钹.区间小波神经网络(ⅠⅠ)——性质与模拟.软件学报,1998,9(4):246-250

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 21,1997
  • Revised:September 01,1997
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063