A Learning Algorithm of Hopfield Neural Network Based on Evolutionary Programming with Forgetting
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper presents a learning algorithm of Hopfield neural network based on evolutionary programming with forgetting. The algorithm can avoid local minima by forgetting some individuals. Under constraints of fixed points, limit cycles or iteration sequences, the algorithm simultaneously acquires both the topology and weights for Hopfield neural network by solving inequalities. It copes with the limitations of evolving Hopfield learning algorithm. It can also find several optimal solutions. The experimental results also demonstrate the effectiveness of the algorithm.

    Reference
    Related
    Cited by
Get Citation

孟祥武,程 虎.基于遗忘进化规划的Hopfield网学习算法.软件学报,1998,9(2):151-155

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 10,1996
  • Revised:April 11,1997
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063