Connectivity Model Based on Temporal Distance and Topological Distance
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61762065, 61363015, 61262020); Natural Science Foundation of Jiangxi Province (20171ACB20018, 20171BAB202009, 20171BBH80022); Innovation Foundation for Postgraduate Student of Jiangxi Province (YC2018-S371)

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Connectivity is an important metric of network performance. In opportunistic sensor networks (OSNs), the frequent topology change caused by node mobility leads to the challenges of representation of connectivity. Building connectivity model for OSNs is helpful for its optimization and maintenance. After analyzing the topological characteristics of OSNs, this paper constructs connectivity model based on temporal-spatial graph theory, which is employed to describe the topological evolution law. According to the message reachability, temporal distance and topological distance are defined based on message transmission temporal and spatial characteristics. The correlation between them is also analyzed by statistical product and service solutions (SPSS), and the results show that there is no obvious correlation. Thus temporal distance and topological distance of each snapshots are employed to construct overall network connectivity. Experimental results show that the proposed model can better depict the network connectivity of OSNs, and comparing with the connectivity model based on Katz centrality, it can represent the connectivity changes better.

    Reference
    [1] Xiong YP, Sun LM, Niu JW, Liu Y. Opportunistic networks. Ruan Jian Xue Bao/Journal of Software, 2009,20(1):124-137(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3467.htm[doi:10.3724/SP.J.1001.2009.03467]
    [2] Eisenman SB, Lane ND, Campbell AT. Techniques for improving opportunistic sensor networking performance. In:Proc. of the IEEE Int'l Conf. on Distributed Computing in Sensor Systems. Berlin, Heidelberg, 2008.157-175.[doi:10.1007/978-3-540-69170-9_11]
    [3] Shu J, Guo K, Liu Q, Liu LL. Research of connectivity parameters in opportunistic sensor networks. Chinese Journal of Computers, 2016,39(5):1067-1080(in Chinese with English abstract).[doi:10.11897/SP.J.1016.2016.01067]
    [4] Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature, 1998,393:440-442.
    [5] Mao YC, Feng GF, Chen LJ, Chen DX. A location-independent connected coverage protocol for wireless sensor networks. Ruan Jian Xue Bao/Journal of Software, 2007,18(7):1672-1684(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/1672.htm[doi:10.1360/jos181672]
    [6] Cagatan GKB, Magsumbol JAV, Baldovino R, Sybingco E, Dadios EP. Connectivity analysis of wireless sensor network in two-dimensional plane using Castalia simulator. In:Proc. of the IEEE Int'l Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management. IEEE, 2017. 1-8.[doi:10.1109/HNICEM.2017.8269492]
    [7] Saeed N, Celik A, Al-Naffouri TY, Alouini M. Connectivity analysis of underwater optical wireless sensor networks:A graph theoretic approach. In:Proc. of the IEEE Int'l Conf. on Communications. IEEE, 2018. 1-6.[doi:10.1109/ICCW.2018.8403740]
    [8] Luo CY, Song YL, Gao ZZ. Connectivity on fixed air route in aeronautical ad hoc networks. Journal on Communications, 2014, 35(9):147-155(in Chinese with English abstract).[doi:10.3969/j.issn.1000-436x.2014.09.015]
    [9] Nicosia V, Tang J, Mascolo C, Musolesi M, Russo G. Graph Metrics for Temporal Networks. Berlin, Heidelberg:Springer-Verlag, 2013.
    [10] Casteigts A, Flocchini P, Mans B, Santoro N. Measuring Temporal Lags in Delay-Tolerant Networks. In:Proc. of the Parallel and Distributed Processing Symp. IEEE, 2011. 209-218.[doi:10.1109/IPDPS.2011.29]
    [11] Liu X, Zhang J, Liu L, Wu W, Tian X, Wang X, Zhang W, Xu J. Network connectivity with inhomogeneous correlated mobility. IEEE Trans. on Wireless Communications, 2016,15(6):4307-4320.[doi:10.1109/TWC.2016.2539168]
    [12] Santoro N, Quattrociocchi W, Flocchini P, Casteigts A, Amblard F. Time-Varying graphs and social network analysis:Temporal indicators and metrics. In:Proc. of the 3rd AISB Social Networks and Multiagent Systems Symp. London, 2011. 32-38.
    [13] Tang J, Musolesi M, Mascolo C, Latora V. Characterising temporal distance and reachability in mobile and online social networks. ACM Sigcomm Computer Communication Review, 2010,40(1):118-124.[doi:10.1145/1672308.1672329]
    [14] Qiu GA, Bao ZH, Zhang GA, Zhang SB. Connectivity analysis of passive cluster with high stability in vehicular wireless network. Journal on Communications, 2016,37(11):42-48(in Chinese with English abstract).[doi:10.11959/j.issn.1000-436x.2016218]
    [15] Rautu D, Dhaou R, Chaput E. Maintaining a permanent connectivity between nodes of an air-to-ground communication network. In:Proc. of the IEEE IWCMC. IEEE, 2017. 681-686.[doi:10.1109/IWCMC.2017.7986367]
    [16] Khan Z, Fan P, Fang S. On the connectivity of vehicular ad hoc network under various mobility scenarios. IEEE Access, 2017,5:22559-22565.[doi:10.1109/ACCESS.2017.2761551]
    [17] Dash S, Nayak BP, Mishra BSP, Swain AR. Randomized grid-based approach for complete area coverage in WSN. In:Proc. of the IEEE Int'l Advance Computing Conf. IEEE Computer Society, 2017. 307-312.[doi:10.1109/IACC.2017.0073]
    [18] Fan XG, Yang JJ, Wang H. Algorithm for enhancing probabilistic coverage in wireless sensor network. Ruan Jian Xue Bao/Journal of Software, 2016,27(2):418-431(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4837.htm[doi:10.13328/j. cnki.jos.004837]
    [19] Islam MA, Iqbal MA, Aleem M, Halim Z. Analysing connectivity patterns and centrality metrics for opportunistic networks. In:Proc. of the Int'l Conf. on Communication, Computing and Digital Systems. IEEE, 2017. 64-70.[doi:10.1109/C-CODE.2017.7918903]
    [20] Cai Q, Niu J, Qu G. Identifying high dissemination capability nodes in opportunistic social networks. In:Proc. of the IEEE Wireless Communications and Networking Conf. Shanghai, 2013. 4445-4450.[doi:10.1109/WCNC.2013.6555294]
    [21] Kim H, Anderson R. Temporal node centrality in complex networks. Physical Review, 2012,85(2):605-624.[doi:https://doi.org/10.1103/PhysRevE.85.026107]
    [22] Holme P. Network reachability of real-world contact sequences. Physical Review E:Statistical Nonlinear and Soft Matter Physics, 2005,71(2):46-119.[doi:10.1103/PhysRevE.71.046119]
    [23] Whitebeck J, Amorim MDD, Conan V, Guillaume JL. Temporal reachability graphs. In:Proc. of the ACM MobiCom. Istanbul, 2012. 377-388.
    [24] Shu J, Xu L, Jiang S, Meng L. Connected model for opportunistic sensor network based on Katz centrality. Computer Science & Information Systems, 2017,14(1):735-750.[doi:10.2298/CSIS161210026S]
    附中文参考文献
    [1] 熊永平,孙利民,牛建伟,刘燕.机会网络.软件学报,2009,20(1):124-137. http://www.jos.org.cn/1000-9825/3467.htm[doi:10.3724/SP.J.1001.2009.03467]
    [3] 舒坚,郭凯,刘群,刘琳岚.机会传感网络连通性参数研究.计算机学报,2016,39(5):1067-1080.[doi:10.11897/SP.J.1016.2016.01067]
    [5] 毛莺池,冯国富,陈力军,陈道蓄.与位置无关的无线传感器网络连通性覆盖协议.软件学报,2007,18(7):1672-1684. http://www.jos.org.cn/1000-9825/18/1672.htm[doi:10.1360/jos181672]
    [8] 罗长远,宋玉龙,高瞻瞻.固定航线的航空自组网连通性研究.通信学报,2014,35(9):147-155.[doi:10.3969/j.issn.1000-436x.2014. 09.015]
    [14] 邱恭安,包志华,章国安,张士兵.高稳定被动群集车联网连通性研究.通信学报,2016,37(11):42-48.
    [18] 范兴刚,杨静静,王恒.一种无线传感器网络的概率覆盖增强算法.软件学报,2016,27(2):418-431. http://www.jos.org.cn/1000-9825/4837.htm[doi:10.13328/j.cnki.jos.004837]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘琳岚,廖子粮,徐磊,舒坚.基于时间距离与拓扑距离的连通性模型.软件学报,2018,29(S1):32-42

Copy
Share
Article Metrics
  • Abstract:2219
  • PDF: 3557
  • HTML: 0
  • Cited by: 0
History
  • Received:May 01,2018
  • Online: November 13,2018
You are the first2033338Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063