Saliency Detection for Stereoscopic Images by Considering Stereo Visual Comfort
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In view of the fact that the previous saliency detection models fail to fully consider the effect of stereo visual comfort and the distribution features of disparity values, a saliency computation model considering stereo visual comfort is proposed. In the extraction of color image's saliency, the model first segments an input image into super-pixel regions by using SLIC algorithm, and merges the regions according to color similarity among adjacent regions. After that, the computation of 2D image's saliency is conducted. In the computation of depth saliency, the model first preprocesses the disparity map, and then a regional disparity contrast-based saliency analysis is applied to compute the salient region of the depth map. Finally, the stereo visual comfort factor is embedded into the fusion of the 2D saliency map and depth map to obtain a final stereoscopic saliency image. We evaluated the proposed model for stereoscopic images with various scenarios. The experimental results indicate that the proposed model outperforme existing saliency detection models, yielding an 85% precision and 78% recall rate. Moreover, the saliency region distributions fit well with the human binocular visual attention.

    Reference
    Related
    Cited by
Get Citation

周洋,何永健,刘晓琪,唐向宏,殷海兵.结合立体视觉舒适度的立体图像显著性检测.软件学报,2017,28(s2):1-10

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 14,2017
  • Revised:
  • Adopted:
  • Online: January 05,2018
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063