Scalable Locality Sensitive Hashing Scheme for Dynamic High-Dimensional Data Indexing
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A scalable locality sensitive hashing (SLSH) scheme is proposed to solve the problem of indexing high-dimensional data for dynamic datasets. The dynamic property destabilizes the size of the dataset, fuzzes up the tendency of data distribution, and conduces to the retrogression of retrieval performance. SLSH inherits two very convenient properties from the novel E2LSH that SLSH can rapidly work on data that is extremely high-dimensional and directly works on Euclidean space. For the purpose of adaptively fit the dynamic data distribution, the original hash family in E2LSH is altered for SLSH. A constraint of hash bucket capacity is applied for the hash parameters adjustment. As a result, SLSH provides robust partitions in the high-dimensional space for the dynamic data.

    Reference
    Related
    Cited by
Get Citation

胡海苗,姜帆.基于可扩展LSH的高维动态数据索引.软件学报,2015,26(S2):228-238

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 15,2015
  • Revised:October 12,2015
  • Adopted:
  • Online: January 11,2016
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063