Saliency Detection Using Self Organizing Map and Manifold Learning
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Extracting nodes that reflect image content and assigning initial labels for these nodes are two critical technologies for saliency detection. A novel method of saliency detection is proposed by this work. It consists of two main parts, one is self organizing map (SOM), and the other is manifold learning (ML). Hundreds of nodes are obtained by the SOM. These nodes can capture not only the color, but also the contour of image content. By means of embedding a two dimension map into higher Euclid space, a weighted undirected graph is constructed. In consideration of edge symmetry in undirected graph, a manifold learning method, which combines undirected graph and semi-supervision, is further proposed. With supplied initial saliency values for nodes along image borders, the saliency values are computed for all nodes. Experimental results demonstrate the proposed model not only achieves high performance on precision and recall, but also presents a pleasing visual effect.

    Reference
    Related
    Cited by
Get Citation

陈加忠,曹华,苏曙光,伊斯刚.自组织映射与流形学习的图像显著度检测.软件学报,2015,26(S2):137-144

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 20,2014
  • Revised:August 20,2014
  • Adopted:
  • Online: January 11,2016
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063