Node Dynamic Selection in Camera Networks Based on Reinforcement Learning
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper addresses the problem of node dynamic selection in camera networks. A selection method based on reinforcement learning is proposed in which the node is selected to maximize the expected reward while minimizing the switching with Q-learning. To accelerate the convergence of Q-learning, the geometry of camera networks is considered for initial Q-values and a Gibbs distribution is used for exploitation. In order to evaluate visual information of the video, a function of the visibility, orientation, definition and switching is designed to assess the immediate reward in Q-learning. Experiments show that the proposed visual evaluation criteria can capture the motion state of the object effectively and the selection method is more accurate on reducing cameras switching compared with the state-of-the art methods.

    Reference
    Related
    Cited by
Get Citation

李骞,孙正兴,陈松乐,夏士明.基于增强学习的摄像机网络节点动态选择方法.软件学报,2015,26(S2):8-19

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 03,2014
  • Revised:April 18,2014
  • Adopted:
  • Online: January 11,2016
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063