Cloud Model-Based Link Quality Prediction Model for Wireless Sensor Networks
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Message is delivered between nodes through single hop or multiple hops in wireless sensor networks(WSNs). Obtaining link quality information in advance which provides reference for the upper routing protocol to select link is the basis of delivering to the monitoring center accurately and in time. In this paper, a concrete analysis about the related works on WSNs link prediction based on intelligent learning is presented. A novel model, Cloud Model, is proposed to predict link quality. The large amounts of link quality samples are collected from different scenarios, and then adaptive gauss cloud transformation is applied to clustering training samples, such as RSSI, LQI, SNR and PRR. Taking the limit of node's resources into consideration, an Apriori algorithm is applied to mining the association rules from the RSSI, LQI, SNR and PRR which had been clustered. At last, three dimensional cloud model is employed in WSNs link prediction. Comparing with BP neural network prediction method, the proposed prediction model achieves higher accuracy as simulation experiment results show.

    Reference
    [1] Li JZ,Gao H.Survey on sensor network research.Journal of Computer Research and Development,2008,45(1):1-15(in Chinese with English).
    [2] Liu LL,Fan YL,Shu J,Yu K.A link quality prediction mechanism for WSNs based on time series model.In:Proc.of the2010Symp.and Workshops on Ubiquitous,Autonomic and Trusted Computing.IEEE,2010.175-179.[doi:10.1109/UIC-ATC.2010.50]
    [3] Farkas K,Hossmann T,Legendre F,Plattner B,Das SK.Link quality prediction in mesh networks.Computer Communications,2008,31(8):1497-1512.[doi:10.1016/j.comcom.2008.01.047]
    [4] Wang Y,Martonosi M,Peh LS.Predicting link quality using supervised learning in wireless sensor networks.ACM Sigmobile Mob Computing and Communications Review,2007,11(3):71-83.[doi:10.1145/1317425.1317434]
    [5] Renner C,Ernst S,Weyer C,Turau V.Prediction accuracy of link-quality estimators.Wireless Sensor Networks.Berlin,Heidelberg:Springer-Verlag.2011.1-16.
    [6] Oh H.A Link Availability predictor for wireless sensor networks.Stanford University,2010.
    [7] Liu T,Cerpa AE.Foresee(4C):Wireless link prediction using link features.,In:Proc.of the10th Int'l Conf.on Information Processing in Sensor Networks(IPSN).IEEE,2011.294-305.
    [8] Guo ZQ,Wang Q,Wan YD,Li MH.A classification prediction mechanism based on comprehensive assessment for wireless link quality.Journal of Computer Research and Development,2013,50(6):1227-1238(in Chinese with English abstract).
    [9] Chen H,Li B.Cloud reasoning method and its application in prediction.Journal of Computer Science,2011,38(7):209-211(in Chinese with English).
    [10] Zhang GW,Li DY,Li P,Kan JC,Cheng GS.A collaborative filtering recommendation algorithm based on cloud model.Ruan Jian Xue Bao/Journal of Software,2007,18(10):2403-2411(in Chinese with English abstract).
    [11] Wang SX,Zhang L,Li HS.Evaluation approach of subjective trust based on cloud model.Ruan Jian Xue Bao/Journal of Software,2010,21(6):1341-1352(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/3501.htm[doi:10.3724/SP.J.1001.2010.03501]
    [12] Yang ZH,Li DE.Planar model and its application in prediction.Chinese Journal of Computers,1998,21(11):961-969(in Chinese with English abstract).
    [13] Chen H,Li DY,Shen CZ,Zhang FZ.A clouds model applied to controlling inverted pendulum.Computer Research and Development,1999,36(10):1180-1187(in Chinese with English abstract).
    [14] Zhang GW,He R,Liu Y,Li DY,Cheng GS.An evolutionary algorithm based on cloud model.Chinese Journal of Computers,2008,31(7):1082-1091.
    [15] Li DY,Du Y.Artificial Intelligence with Uncertainty.2nd.ed.,Beijing:Nation Defense Industry Press,2014(in Chinese).
    [16] Agrawal R,Srikant R.Fast algorithms for mining association rules.In:Proc.of the20th Int'l Conf.Very Large Data Bases(VLDB).1994,1215:487-499.
    附中文参考文献:
    [1] 李建中,高宏.无线传感器网络的研究进展.计算机研究与发展,2008,45(1):1-15.
    [8] 郭志强,王沁,万亚东,李默涵.基于综合性评估的无线链路质量分类预测机制.计算机研究与发展,2013,50(6):1227-1238.
    [9] 陈昊,李兵.云推理方法及其在预测中的应用.计算机科学,2011,38(7):209-224.
    [10] 张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法.软件学报,2007,18(10):2403-2411.
    [11] 王守信,张莉,李鹤松.一种基于云模型的主观信任评价方法.软件学报,2010,21(6):1341-1352.http://www.jos.org.cn/1000-9825/3501.htm[doi:10.3724/SP.J.1001.2010.03501]
    [12] 杨朝晖,李德毅.二维云模型及其在预测中的应用.计算机学报,1998,21(11):961-969.
    [13] 陈晖,李德毅,沈程智,张飞舟.云模型在倒立摆控制中的应用.计算机研究与发展,1999,36(10):1180-1187.
    [14] 张光卫,何锐,刘禹,李德毅,陈桂生.基于云模型的进化算法.计算机学报,2008,31(7):1082-1091.
    [15] 李德毅,杜鹢.不确定性人工智能.第2版..北京:国防工业出版社,2014.
    [16] 张光卫,何锐,刘禹,李德毅,陈桂生.基于云模型的进化算法.计算机学报,2008,31(7):1082-1091.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘琳岚,谷小乐,刘松,舒坚.基于云模型的无线传感器网络链路质量的预测.软件学报,2015,26(S1):70-77

Copy
Share
Article Metrics
  • Abstract:2882
  • PDF: 5546
  • HTML: 0
  • Cited by: 0
History
  • Received:April 15,2015
  • Revised:July 20,2015
  • Online: November 14,2015
You are the first2038304Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063