Target Tracking Algorithm Based on Kalman Filtering with Quadratic Equality Constraints
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Target tracking is one of the essential applications of the wireless sensor network. This paper considers the scenario where the target motion trajectory satisfies a quadratic equality constraint. In practice, when an aircraft hovers or a ground vehicle travels along a curve, its trajectory can be represented approximately as a quadratic function. This study applies quadratic constraints in the well-known Kalman filter (KF) to improve its performance in target tracking. The proposed algorithm first utilizes newly obtained positioning measurements and the unconstrained KF to produce an updated state estimation and then refines it using a maximum likelihood estimator (MLE) with quadratic equality constraints. When solving the constrained MLE problem, this paper formulates it as a generalized trust region sub-problem (GTRS) in order to obtain its globally optimal solution. Simulation results show that the proposed algorithm outperforms previously developed nonlinear KF algorithms with quadratic equality constraints in terms of enhanced target tracking accuracy.

    Reference
    Related
    Cited by
Get Citation

曹亚陆,杨乐,刘全胜,彭力,郭福成.一种带二次等式约束的卡尔曼滤波目标跟踪算法.软件学报,2013,24(S1):24-32

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 02,2013
  • Revised:August 22,2013
  • Adopted:
  • Online: October 18,2013
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063