Localization Optimized by Similarity for WSN Mobile Nodes
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    One of the most crucial tasks in wireless sensor networks (WSN) is to determine the locations of sensory nodes as they may not all be equipped with GPS receivers. In this paper, an improved algorithm called Monte Carlo localization weighted by similarity (MCWS) is proposed. MCWS optimizes the sampling area of Monte Carlo localization (MCL) by adopting the mobile node's location based on the received signal strength indicator (RSSI) as the new sampling center. The signal values are stored as a target sequence, and by comparing the similarity between samples' sequences and the target sequence, samples can be filtered. Also the similarity values are used as the weighted standards to calculate coordinate of the mobile node. Extensive simulation results confirm that the new localization approach outperforms other MCL algorithms. The MCWS algorithm reduces the localization error by 1%~10% under different density of beacon nodes and by 30%~40% under different maximum speed of mobile nodes, respectively.

    Reference
    Related
    Cited by
Get Citation

刘志华,息珍珍,陈嘉兴,张健.相似度优化的无线传感器网络移动节点定位.软件学报,2013,24(S1):16-23

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 02,2013
  • Revised:August 22,2013
  • Adopted:
  • Online: October 18,2013
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063