Sensing Surrounding Contexts using Dynamic Bluetooth Information
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traditional context-aware systems on mobile platform mainly focus on utilizing various localization based technologies to detect and recognize significantly meaningful places. However, they cannot intuitively describe the dynamic semantic context of the surroundings. In this paper, a novel context sensing approach is proposed to distinguish typical context based on dynamic Bluetooth information. The study builts a context classification model through observing the occurrence of ambient Bluetooth devices and dynamic statistical features extraction and further applied the model into inferring semantic social context based on Bluetooth traces from real-world personal lives. Evaluation results show, just based on dynamic Bluetooth information, the proposed feature extraction methods and DT (Decision Tree) can achieve an average accuracy of 86.8% for recognizing six representative short time-length contexts, which outperforms several traditional machine learning methods. In addition, the accuracy of long time-length context inferring can also reach 92% without any additional information but Bluetooth.

    Reference
    Related
    Cited by
Get Citation

陈益强,李秋实,刘军发,胡琨,陈振宇.基于蓝牙动态特征的移动情境感知.软件学报,2011,22(zk2):137-146

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 20,2011
  • Revised:December 01,2011
  • Adopted:
  • Online: March 30,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063