A Feedback Adaptive Fuzzy Petri Net Model for Context Reasoning
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As an improved model of fuzzy Petri net, adaptive Petri net (AFPN) has got the learning ability from neural network. But AFPN still depends on offline training data, while actual environment is so complex, vague and changeful that AFPN seems slightly inadequate. This paper proposes an approach based on fuzzy logic and feedback theory to improve AFPN. The approach introduces feedback mechanisms into AFPN to enhance the adaptive ability in dynamic environment. In addition, the approach embeds fuzzy logic theory into the representation of context information. Thus, the uncertain context information management is more conformable with person’s sense. The approach is also able to learn the parameters of membership function by using the back propagation algorithm of neural network. At the end of the paper, an experiment is designed to demonstrate that the approach is feasible and effective in fuzzy reasoning.

    Reference
    Related
    Cited by
Get Citation

文赛平,朱珍民,叶剑.一种用于上下文推理的带反馈的自适应模糊Petri 网模型.软件学报,2010,21(zk):310-317

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 01,2010
  • Revised:December 10,2010
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063