基于组合负载预测模型的多租户数据库弹性伸缩方法
作者:
作者单位:

作者简介:

通讯作者:

刘海龙, E-mail: liuhailong@nwpu.edu.cn

中图分类号:

基金项目:

国家重点研发计划(2023YFB4503600)、国家自然科学基金(62172335)、CCF-华为胡杨林基金(CCF-HuaweiDBIR0004B).


Elastic Scaling Method for Multi-tenant Databases Based on the Hybrid Workload Prediction Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    云环境下的多租户数据库重要特性之一是可伸缩性,然而大部分的弹性伸缩技术难以针对复杂变化的负载进行有效的伸缩决策.若能提前预测负载变化,则能够准确调整资源供给.鉴于此,本文提出了基于内存负载预测的多租户数据库弹性伸缩方法,包括一种组合负载预测模型和一种弹性伸缩策略.组合负载预测模型融合了卷积神经网络、长短期记忆网络和门控循环单元的优势,可以比较精确地预测数据库集群内存负载需求;弹性伸缩策略基于需求预测结果,调整虚拟机数目,保证资源供应处于合理范围.与现有方法对比,本文模型预测误差降低8.7%-21.8%,预测拟合度提高4.6%;在此基础上,本文改进了贝叶斯优化算法用于本模型超参数调优,解决了贝叶斯优化在离散解、连续解的组合域中效果较差的问题,误差进一步降低7.6%,拟合度进一步提高1.04%.实验结果表明,与kubernetes中应用最广泛的伸缩策略相比,本文弹性伸缩方法避免了弹性伸缩的滞后性与资源浪费,响应时间降低8.12%,延迟降低9.56%.

    Abstract:

    One of the important features of multi-tenant databases in cloud environments is scalability. However, most elastic scaling techniques struggle to make effective scaling decisions for complex workload variations. If workload changes can be predicted in advance, resources can be accurately adjusted. In this paper, we propose a memory load-based elastic scaling method for multi-tenant databases, including a cluster-level load prediction model and an elastic scaling strategy. The load prediction model integrates the advantages of convolutional neural networks, long short-term memory networks, and gated recurrent units to accurately forecast the memory load requirements of the database cluster. The elastic scaling strategy, based on the demand prediction results, precisely adjusts the number of virtual machines to ensure that resource provisioning remains within a reasonable range. Compared to existing methods, this model reduces prediction errors by 8.7% to 21.8% and improves prediction fitting by 4.6%. Additionally, this paper improves the Bayesian optimization algorithm for hyperparameter tuning of this model. It addresses the issue of poor performance of Bayesian optimization in combined domains of discrete and continuous solutions, further reducing errors by 7.6% and improving fitting by 1.04%. Experimental results indicate that compared to the most widely used scaling strategy in Kubernetes, the elastic scaling method proposed in this paper avoids the latency and resource waste associated with elastic scaling. Response time is reduced by 8.12%, latency by 9.56%.

    参考文献
    相似文献
    引证文献
引用本文

徐海洋,刘海龙,陈先,王磊,金轲,侯舒峰,李战怀.基于组合负载预测模型的多租户数据库弹性伸缩方法.软件学报,2025,36(3):1-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-27
  • 最后修改日期:2024-08-19
  • 录用日期:
  • 在线发布日期: 2024-09-13
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号