深度学习框架测试研究综述
作者:
作者单位:

作者简介:

马祥跃(1997-), 男, 博士生, 主要研究领域为智能软件测试;杜晓婷(1990-), 女, 博士, 讲师, CCF专业会员, 主要研究领域为智能软件测试, 软件仓库挖掘, 缺陷预测;采青(2000-), 女, 硕士生, 主要研究领域为软件测试;郑阳(1991-), 男, 博士, 高级工程师, 主要研究领域为人工智能系统的测试, 监测和修复研究, 数据驱动测试;胡崝(1981-), 男, 博士, 高级工程师, CCF专业会员, 主要研究领域为可信人工智能, 软件可靠性;郑征(1980-), 男, 博士, 教授, CCF专业会员, 主要研究领域为人工智能软件系统的可靠性及测试方法.

通讯作者:

郑征, E-mail: zhengz@buaa.edu.cn

中图分类号:

基金项目:

国家自然科学基金(61772055, 61872169); 中央高校基本科研业务费专项资金(2023RC06)


Survey on Testing of Deep Learning Frameworks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着大数据和计算能力的快速发展, 深度学习技术取得巨大突破, 并迅速成为一个具有众多实际应用场景和活跃研究课题的领域. 为了满足日益增长的深度学习任务开发需求, 深度学习框架应运而生. 深度学习框架作为连接应用场景和硬件平台的中间部件, 向上支撑深度学习应用的开发, 帮助用户快速构造不同的深度神经网络模型, 向下深度适配各类计算硬件, 满足不同算力架构和环境下的计算需求. 作为人工智能领域的关键基础软件, 深度学习框架中一旦存在问题, 即使是一个只有几行代码的缺陷都可能导致在其基础上构造的模型发生大规模失效, 严重威胁深度学习系统安全. 作为以深度学习框架测试为主题的研究性综述, 首先对深度学习框架发展历程和基本架构进行介绍; 其次, 通过对55篇与深度学习框架测试研究直接相关的学术论文进行梳理, 对深度学习框架缺陷特性、测试关键技术和基于不同测试输入形式的测试方法这3个方面进行系统分析和总结; 针对不同测试输入形式的特点, 重点探究如何结合测试关键技术来解决研究问题; 最后对深度学习框架测试尚未解决的难点问题进行总结以及对未来值得探索的研究方向进行展望. 可以为深度学习框架测试研究领域的相关人员提供参考和帮助, 推动深度学习框架的不断发展成熟.

    Abstract:

    As big data and computing power rapidly develop, deep learning has made significant breakthroughs and rapidly become a field with numerous practical application scenarios and active research topics. In response to the growing demand for the development of deep learning tasks, deep learning frameworks have arisen. Acting as an intermediate component between application scenarios and hardware platforms, deep learning frameworks facilitate the development of deep learning applications, enabling users to efficiently construct diverse deep neural network (DNN) models, and deeply adapt to various computing hardware, meeting the computational needs across different computing architectures and environments. Any issues that arise within deep learning frameworks, which serve as the fundamental software in the realm of artificial intelligence, can have severe consequences. Even a single bug in the code can trigger widespread failures within models built upon the framework, thereby posing a serious threat to the safety of deep learning systems. As a review exclusively focuses on the testing of deep learning frameworks, this study initially introduces the developmental history and basic architectures of deep learning frameworks. Subsequently, by systematically examining 55 academic papers directly related to the testing of deep learning frameworks, the study systematically analyzes and summarizes bug characteristics, key technologies for testing, and methods based on various input forms for testing. The study explores how to combine key technologies to address research problems. Lastly, it summarizes the unresolved difficulties in the testing of deep learning frameworks and provides insights into promising research directions for the future. This study can offer valuable references and guidance to individuals involved in the research field of deep learning framework testing, ultimately promoting the sustained development and maturity of deep learning frameworks.

    参考文献
    相似文献
    引证文献
引用本文

马祥跃,杜晓婷,采青,郑阳,胡崝,郑征.深度学习框架测试研究综述.软件学报,2024,35(8):3752-3784

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-04
  • 最后修改日期:2023-07-03
  • 录用日期:
  • 在线发布日期: 2024-01-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号